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Abstract

A time-domain boundary integral equation method has been developed to

calculate elastodynamic fields generated by the incidence of stress (or

displacement) pulses on single cracks and systems of two colline arcracks.

The system of boundary integral equations has been cast in a form which is C

amenable to solution by the boundary element method in conjunction with a

time-stepping technique. Particular attention has been devoted to dynamic

overshoots of the stress intensity factors. Elastodynamic stress intensity

factors for pulse incidence on a single crack have been computed as

functions of time, and they have been compared with results of other

authors. For collinear macrocrack-microcrack configurations the stress

intensity factors at both tips of the macrocrack have been computed as

functions of time for various values of the crack spacing and the relative

size of the microcrack.
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Introduction

The interaction of a stress pulse with a crack may give rise to dynamic

overshoots of the stress intensity factors, i.e., larger stress intensity

factors than would be obtained for quasi-static application of the external

loads. For step-stress pulses the dynamic overshoot phenomenon has been

noted by Achenbach [1], Thau and Lu [2] and Sih [3]. For the two

dimensional configuration, Thau and Lu (2] used integral transform

techniques in conjunction with a generalized Wiener-Hopf method to obtain

exact but short-time dynamic stress intensity factors. Sih et al.[3]

applied integral transform methods together with a numerical solution of

dual integral equations and a numerical inversion of Laplace transforms to

calculate dynamic stress-intensity factors. The problem has also been

treated by finite-element [4] and finite difference methods (5]. An

extension of the approach of Ref.[3] has been presented by Itou [6], who

analyzed the fields for transient wave interaction with two coplanar cracks

of equal length.

In this paper we investigate pulse-generated crack-tip fields by the

use of a time-domain boundary integral equation (BIE) method. For wave

interactions with volume scatterers, this technique has been successfully

applied to two-dimensional elastodynamic problems by several authors, see,

e.g., Niwa et al.[7], Manolis [8], Mansur [9], Antes [l0],(ll], and Estorff

(12]. The usual displacement BIE formulation for scattering of elastic

waves by volume scatterers degenerates, however, when the scatterer is

reduced to a flat crack. A remedy for this difficulty is the use of
"traction" BIE's, which results in a S'ste!L of 4nular integral equions

for the unknown crack opening displacements. Unfortunately, such BIE's are

.,
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highly singular and they cannot be solved directly by numerical methods. In

the present paper this difficulty is overcome by reducing the higher order

singularities to integrable singularities which can be incegraLed

analytically or numerically. The simplified time-dependent BIE's are solved

by the boundary element method in conjunction with a time-stepping

technique. An alternative method has been proposed by Nishimura et al.[13]

who used a double layer-regularization procedure. The numerical approach of

the present paper has been applied to obtain time histories of elastodynamic

stress intensity factors for single cracks as well as for configurations of

a macrocrack and a collinear microcrack. Parametrical studies show the

influence of the size and location of the microcrack on the effective stress

intensity factors of the solitary crack.

The results for collinear cracks approximate the fields for macrocrack-

microcrack configurations that are often observed in brittle materials such

as ceramics, rocks and concretes. In such solids the high level of stress

and deformation in the vicinity of a crack tip gives rise to microcracking

and/or the formation of microvoids in a confined zone surrounding the macro-

crack tip (see Bradt et al.[14], Carpinteri et al.[15], Hoagland et

al.(16]). The existence of neighboring micro-cracks may significantly alter

the stress intensity at the main crack tip, as shown by Kachanov et al.[17],

Rubinstein [18] and Rose [19] for the static case. Depending on the size

and location of microcracks or microvoids, their presence can either

increase the stress intensity factors (stress amplification) or decrease it

(stress shielding or toughening). Knowledge of the dependence of the stress

intensity factors on the microdefects will assist in predicting macrocrack

propagation. For static loading several studies can be found in the
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literature, see Chen [20], Chudnovsky et a1.[21],[221, Kachanov [231,

Kachanov et al.[17], Rose [19], Rubinstein [18],[24] and Yokobori et

al.[25].

Recently, Zhang and Achenbach (26],[27] have investigated the effects

of microvoids and microcracks for time-harmonic wave loading. It was found

that dynamic effects may give rise to considerable amplifications of the

stress intensity factors.

2. Problem Statement

A two-dimensional configuration of a homogeneous, isotropic, linearly

elastic body containing a macro-crack and a collinear neighboring micro-

crack is shown in Fig. 1. An incident displacement pulse interacts with the

two cracks, and generates a scattered displacement field. The propagation

direction of the incident pulse is in the xIx2 -plane, and the analysis of

this paper is two-dimensional and for a state of plane strain. In terms of

in sc
the incident field, u (x,t), and the scattered field, uS(x,t), the total

displacement field may be written as

i + sc ,~-12

u(x,t) - u n(x,t) + u (x,t) a - 1,2. (2.1)

a

Similarly we have for the stress components

in sc (2.2)
a a((x,t)au + a(xt)...

V.
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Since the faces of the cracks are free of tractions, the following

conditions follow for the scattered field

sc in for x e r + r (2.3)

2 (xt)-- (x't) fo xr2x)-. a2(-' _ (23

where r1 and r2 define the faces of the macro-crack and the micro-crack,

respectively. The initial conditions are

sc -sc
u. (x,t) - uC (xt) - 0 for t < 0. (2.4)

Here time t starts when the incident wave first reaches the crack.
'p

The integral representation for the components of the scattered

displacement field may be written as

t) f f a2(x
02 r 1(Xrp2t;x.?)Au-  (x,r)d 1 (2.5)

Here x is the position vector of the observation point, a 2  is the stress

Green's function for the uncracked plane (see Appendix A), and Au is the

displacement jump across the crack faces (the crack-opening displacement),

+S

Aua (X1,) - u a(x,0+,r) - u a(X1,O',). (2.6)

As shown in the next section, the solution to the problem formulated in this

section can be reduced to the solution of a set of boundary integral

equations.

p.k
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3. Derivation of Discretized BIE's

In the conventional procedure BIE's can be derived from Eq.(2.5) by

taking the limit xP - r - r + r2. However, such "displacement" BIE's

degenerate for cracks, and hence they are not a valid basis for numerical

modeling. This difficulty is overcome by the use of "traction" BIE's.

These are obtained by substituting Eq.(2.5) into Hooke's law

a -aftu +A&u +u A), (3.1)

which yields a representation formula for the stress components ao2 at the ,
a2

observation point x as:
-P

sc Ga7c2( p~t) - " f f KG  (as 2( P t f K C9Z6 ( P t; x'r)Au 5( x'r)n dsdr' P  r , (3.2)

0 r~

where n are the components of the normal vector to r, and

KG - + () (3.3)af6e a# A6e f7,7  6ca,o e6f,a)3

Then, BIE's can be obtained from Eq.(3.2) by taking Xp - r. Unfortunately,

such "traction" BIE's are hyper singular when the observation point xp and

the source point x coincide, since in this case the kernel function KG  f

Eq.(3.2) behaves as

rG if r 0 (3.4)

and

% : %:
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KG 1 if (t-?)2 - r2/C2  
, (3.5)'06' J[ (t-T)2-r51cC2]6

a86E a

in which r - bx-x ' and c is either cL or CT, where--p C

c2 - (X+2p)/p , - I/p. (3.6)

A detailed discussion of these singularities can be found in a paper by

Nishimura et al. [13].

To reduce these higher order singularities, Nishimura et al. [13]

proposed a double layer-regularization procedure. In the present paper we

apply another regularization method which has been developed by the authors

in a recent paper [26] for scattering of incident time-harmonic elastic

waves by multiple cracks.

Following the procedure of Zhang and Achenbach (26], we first divide r

into J elements. Then Eq.(3.2) can be written in the following discretized

form:

sc J  t sj+
a 2 -- Q E f J KG (xpt;xr)Au6(xr)n dsdr,

J-I 0 sf

x j r , (3.7)

where s and sJ+ I are tbe endpoints of the j-th element. Because the main

structure of the three terms in KG (see Eq.(3.3)) is similar, we will
a,66 C

consider only the following integral

::

1i
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"s A677unds .(3.8)

By adding and subtracting the same terms, Eq.(3.8) can be rewritten as

" (a Au6 n a , n )ds

Gsj+1 7 Aunds (3.9)
S i

It can be shown that the first integral of (3.9) can be put into the

following form (see Appendix B of Zhang and Achenbach [26])

G S+J+l G A7EE67 6 a 6Au ,nds (3.10)
e e~e6-Au6 is se

k I

~'.:

where e denotes the two-dimensional permutation tensor. The second

integral of Eq.(3.9) can be rewritten as

sp

"S.

J 6 l a ,GAu n ds p fs 1, Au n ds *(3.11)f j 6-Y' 6 7

G .G
where the equation of motion for the Green's function

s -Y, e PU6-7 , p x , t r , (3.12)

P'
? , 4 '*'~SpSS~',. ~
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G
has been used. Here u6 is the Green's function for the displacement

components (see Appendix A). Equation (3.10) and Eq. (3.11) together result

in

S

C G AuS j+l e GAu nds
5. S- y 7A/A 667 6,A As sj

S.+ f j+l S. laS- Au 5n ds .(3.13)

Using the same idea described above for the second and the third terms of

'IEq.(3.3) we obtain

J+I G Sj l

f Kr Au nds - HI Au - f fJ He Au6,.n ds
f6e 6 e a6 6 i s

+ p fSJl 112 Au s(.4
s c a 6  s (

where

H - G G G'i ~H 6 a6€ ° + ke( a6 + er ° a (3.15)

06~S ap -ye SCey PC sea ae 6eP6(.5

H2 u6 n + M(uG n+ un) (3.16)
cz.B 6uaB-~yy 7 Saf6i Ba

Furthermore, it can be shown that the following relation holds (Appendix B)

- . 'V d .. .. . .. .*p* 'a. |P'-I
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t t
f H2 6AU dr H2 6AUidr (3.17)

Substituting Eq.(3.14) and Eq.(3.17) into Eq.(3.7), taking the limit xp _ r

and applying the boundary conditions on the cracks, Eq.(2.3), the following a

discretized BIE's are obtained

12 - t JH2 ISj+l - sj+l 12 .l- , 1 U _~ fi H21AUl dxl

j-l o ss

+ fJ+l 2 Aadx d? (3.18)+pj121 1 1f

" (x. ) aAu)

22 ft I22a lSj+l fs 22+21I

+ H * i+ H2  AHudx lr(3.19)
-222 2

The integrals in (3.18) and (3.19) are to be understood in the sense of

Cauchy principal values. It should be noted here that Eq.(3.18) and

Eq.(3.19) are two decoupled BIE's for the unknown crack opening

displacements AuI and Au2 (as well as their derivatives). The singular

terms of Eq.(3.18) and Eq.(3.19) at xp - x can be integrated analytically or

numerically without difficulties as in the usual "displacement" BIE

formulations. In the next section, we will present a time-stepping scheme

for solving Eqs.(3.18) and (3.19). "

pw
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4. Numerical Implementation

To solve the BIE's (3.18) and (3.19), discretization of time t is

necessary. Here we have used equal time increments At, where

tn - nAt (n - 1,2,.-.N) denotes the time after the n-th time-step. The

unknown crack opening displacements Au a(x,r) in (3.18) and (3.19) are

approximated by the following interpolation functions

AU ,) - Z Z Jj (x)7(T) (Zu)n (4.1)
Sn

where uj(x) and qn (r) have the properties

I

* n

Aj() - 6ij, 7 (T) 
6 mn (4.2)

In Eq.(4.2), x' defines the i-th nodal point, and

m i(Au)M - Au (xi , m) (4.3)
a i a- M

represents the crack opening displacements at node i and at time mAt.

In our analysis the function pj(x) has been taken to be unity over each

element except for elements near crack tips. For these elements a special

shape function

4J (x) - (a+xl) (4.4)

has been used to describe the proper behavior of Au at the crack tips x. -
a

±a. Higher order shape functions for qn (r) are desirable since Eqs.(3.18)



and (3.19) contain not only the functions Aua, but also their derivatives.

In this paper the piecewise linear shape function

i- t -n _<- t,
n() . AA (4.5)

0 otherwise ,C

has been employed.

For each time-step Eqs.(3.18) and (3.19) can be rewritten as

a12(Xptm)- N z 1j21(Xp;X)i(x)n-1 j- isj

- 1 j+ l mn :i.._
)s~ L mn 2(x ;x) 'L- (xldx1 +sj1 11- - ax,

" P fj+1. emn Cx ;X)A (x)dxl](A&ul)' (4.6)
sj

N J s J+l
a22(Xp1t) + ;X)1Aix)

n-1 J-1 is

f J+l m
L 2(!P! "_x) - A-j(x)dx, + !

~sj

+ p fiJl O 2 (xP'x)Aj(x)dxI (Au2) (4.7)
Si ,-2

-:!5

" - ' " I - ' . .. . .l . ... -
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In these equations the following abbreviations have been used

(n+l)At

L a(x P;X) - f (n+l)At H2 (X t ;xr)qn (r)dr" (4.9)
dfn-l) a# -P, M

(n4-l)At

With Eq.(4.5), the time integrations in (4.8) and (4.9) can be

performed analytically by using the integrals

(n+l)At G .1 r-natI1 d. sL sT

(n-l)At '#7 PM- At a7 aY

and

(n+l)Atn

f 5 lA H2  (X P,t ;x,,r)q7 C-T)dr -L(H
2  [r (m-n+l)At] - 2H2  (r (m-n)Atl

(n-l)At a - At a#7 a1 7

+ H2 [r,(m-n-l)at ]) (4.11)

The functions SL T
T fni and S are given by

- (CT~At)2 {A 08-[ D 3(r,l) -2 3(r,0) + s r,-I
a#7 2irr3 3 -

2D mn + Dn

- 2 [D [D(r.) - 2D (r,0) + D 3_(r-l)]}

af-(c:v L= mn ' '

- L,T, (4.12)

where A and B can be found in Appendix A, and the function

V 0%'
,
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DP(r,q) is defined as

C [(m-n-q)2-r2/(c At)] p/2  if (m-n-q) > r/(cAt),(4
D (r,q) - mn /~(--)(4.13)

0 ,0 otherwise.

By choosing J collocation points on r and N points for t, and requiring

that Eqs.(4.6) and (4.7) are satisfied at each discrete point

i CP (i - 1,2,..-J), we obtain a system of linear algebraic equations which

must be solved at each time t - mAt (m -1,2,-.N):
m

N J
- Z E Ai'(Au) n (4.14)

n-i j-ij

N J
g E E Z Bij (Au 2 ) j 1 (4.15)

n-i J-i

where

fm in. i ( .6• . -1 12 -P m (.6

m in i
- '22(XP tm) (4.17)

2 )(x) ISj+l -Sj+l mn i _a_ij s121'- P'-)'"J -2l21(xP;X)ax uj (x)dxl,
r

Ssj+l  ( (x

.9. ~ 121,-P'5~-~ 'l(.8
Sj %

........ .. ,'
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La i +l sj+l mn
- j 2 2 2 X1pX),U j W -

s J L2 2 (x';x) - I (x)dx I

Is s+ 2sj 1

+ P fj~~* je (xi;x) A (x)dx~ (4.19)

Here we will discuss only A j in some more detail, since the main

structure of Amn and B is the same. At first sight it seems that N2j2

discrete kernels A j have to be calculated. However, this number can beij

reduced to NJ2 , if we use the causality properties

u ,tmX, - 0 if n > m (4.20)

Ga a-(Xptm;,t n  0 , if n > m , (4.21)

and the following time translation properties of the Green's functions

(Appendix A):

u(xp,t;x,t) - ua (Xpxtm+ tl;x,tn + t1 ) , (4.22)

G p G tt ,, + t , (4.23)

Thus, the matrix A ' has the following special form

."" 110

v, V'.,
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A' 0' Al 0ij ij
A2 1  A2 2  A2  A'

A3 1 M? A33 A3 A2  A'ij j .° (4.24)

Ai A . .. A A A A'
ij ij ij ij ij . . j

where q is defined by

q - m-n+l (4.25)

mn anThe form of B ', is similar to Aij, and it will not be given here for

brevity.

By considering this special structure of A.m and B we obtain finally
ij i

the following time-stepping scheme:

J

(AUt)i Z (Al j) f'

(4.26a,b)

1 -1 i j Pl jk IA1 k,

q (1 [gq q- (q-p+l) p (4.27a,b)

2 -l J1 p- B( +Au k]

,

V 4 C V% ~'r 's ~ - - -
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in which (A'j) I and (BIj) I denote the elements of the inverse matrix of At

and BI at the first time step. Also, q - 2,3,..-N.

At each time step only one blockmatrix A q (and B q) has to be

evaluated. For the first time step, the inverse matrix (A') and (B')1

must also be determined. Spatial integrations in Eq.(4.18) and Eq.(4.19)

have been performed analytically for the constant shape function (pj (x) -

1), and numerically for the "crack-tip" shape function (see Eq.(4.4)) by

using an 8-points Gauss-Jacobian formula. In the latter case, the singular

terms have been integrated analytically and numerically.

5. Dynamic Stress Intensity Factors

Once the crack opening displacements, Au6 , have been calculated from

the time-stepping scheme as described in the last section, stress intensity

factors can be calculated by using the following well-known relations [30]

p~t _ -A2~... im 1 Au2 (xlt) (5.1)

4(1-v) a - 4 1 t)j

where "+" indicates the tip at x1 - a and "-" indicates the tip at xI - -a,

while P denotes Poisson's ratio.

In the numerical calculations, the incident wave was taken as either a

plane longitudinal wave of the form

in UL sinI, u

u L [cosJ cLt - (xl+a)sin#-x2coso].H[cLt - (xl+a)sinO-x2cosb ]  (5.2)

or a plane transverse wave of the form

2Z Z N
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un "UT sin4 [CTt " (xl+a)sino x2cos].H[cTt " (x,+a)sino-x2cos#]' (5.3)

where UL and UT are the displacement amplitudes, # is the angle of

incidence, and H(o) is the Heaviside function. The corresponding stress

components are

Sin UL(A+2p - 2pcoso)H(cLt-(xl+a)sino - x2cosO], (5.4)

a12 " ULsin(20)Hfct-(xl+a)sinO - x2cOsO], (5.5)

022 - UL[C+2  2 Msin2 )H~cLt-(xl+a)sinO x2cOsO], (5.6)

for an incident longitudinal wave, and

I " in-"UTpSin(20)H[ t(Xl+a)sino ~cs] (5.7) 4
11 - ~t- x2cosol,(57

"in - - UTpcos(20)H[cTt (x +a)sinO " x2cOsO], (5.8)

in - UTAsin(20)H[c t.(x +a)sino - x2cosO] (5.9)22 TT 12

for an incident transverse wave.

All calculations have been carried out for a Poisson's ratio Y - 1/4.

The geometrical configuration is shown in Fig. 1. The principal (macro)

crack has been discretized into 50 elements of equal length, and a

proportional number of elements have been used for the micro-crack.
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For b/a - 0, the configuration reduces to a single crack of length 2a. I

This case was used to check numerical results obtained by our method.

Comparisons with Thau and Lu's results (2] are given in Figures 2a and 2b.

Figure 2a presents results for normal incidence of a longitudinal (L) wave,

while Fig. 2b is for a normally incident transverse (TV) wave. All results

are normalized by the corresponding static values. The agreements are very

good, especially in the overall variation of the stress intensity factors

with time and in their peak values. Calculations for inclined incidence

(4 , 0) of L or TV waves have also been carried out, and the agreements with

Thau and Lu's results are again very good. The time increment was selected

as CTAt - 0.08a. The influence of At on the stability of the time-stepping

scheme has been studied numerically, and it was found that too small a value

of At may cause instabilities for the results at large time. The same

conclusions have been drawn by Nishimura et al.[13]. The time increment

chosen here always yielded good results, and hence, this value has also been

used for the macro-microcrack interaction problems. S.'

For a fixed half-length of the microcrack, b/a - 0.1, and for normal

incidence of a longitudinal wave ( - 00), the dynamic stress intensity

factors are shown in Figures 3a,b, versus the dimensionless time cLt/a, for

various values of the crack-tip distance d/a. All results have been

normalized by the static stress intensity factors of a single crack under

the corresponding static load. Due to symmetry with respect to x2 - 0, the

--2

Mode-II stress intensity factors are identically zero, K- - 0. Figure 3a
II

shows that, as expected, the presence of a microcrack does not influence the

left tip of the macrocrack at small time. However, after cLt/a 3 the

difference between both cases becomes somewhat distinct. It is, however,

6
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evident that the crack-tip away from the microcrack is not significantly

affected by the presence of a collinear microcrack. The presence of a

microcrack, does, however, give rise to a substantial increase of the stress

intensity factor at the tip adjoining the microcrack (Fig. 3b). The

K -factor increases with decreasing crack-tip distance d/a, and considerable

amplifications in KI occur for very small values of d/a. At both tips of

the main crack, the maximum dynamic stress intensity factors exceed the

corresponding static values, which are reached at large time t. Both K and

I%

Ki, assume the values for a single solitary crack of half-length a as

d/a -.

Figures 4a,b and Figures 5a,b show the normalized dynamic stress

intensity factors when a longitudinal wave is indcident under an angle

300. Both the Kj and K 1 factors are present in this case. The time

history of K (Fig. 4a) is very similar to that for normal incidenceI

(Fig. 3a). The K -factor at the tip adjoining the microcrack, which is zero

before the incident wave front arrives at this tip (cLt/a < I), is shown in

Fig. 4b. The smaller the distance between microcrack and main crack, the

larger is the stress intensity at the crack-tip adjoining the microcrack.

It is also interesting that the maximums of the normalized values K- are the

same as those for normal incidence. Results for KI4I are given in Figures

5a,b. Their variations with the dimensionless time cLt/a, and their

dependence on the crack-tip distance d/a, are similar to those of the

K4-factors. The overshoots of the Mode-II dynamic stress intensity factors

are, however, less than those of the Mode-I cases.

k'S

,,, . . .,. ..- ,. ,., ..... ....- ., .. ,.. ..- - , . . ,- .. ,.... .- .-.-. -.. ,._...-. . ,.,, .. -.-.. w%-.-a
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It is evident that the dynamic stress intensity factors depend strongly

on both the location and the size of the microcrack. For a fixed crack-tip

distance, d/a - 0.05, and for normal incidence of a longitudinal wave

- 00), the dependence of the Kji-factors on the dimensionless half-length

of the microcrack, b/a, is shown in Figures 6a,b. As before, at small time,

the crack-tip away from the microcrack behaves as the tip of a semi-infinite

crack, and KI is the same for all five cases (proportional to icLt/a). The

influence of the microcrack (as well as the crack-tip adjoining the

microcrack) onK becomes important when diffracted waves arrive at the left

tip of the main crack. The peak K I-factor increases with increasing b/a,

but it is shifted to somewhat larger time cLt/a. The Kl-factor for larger
LI

b/a can be slightly smaller than for a shorter microcrack (smaller b/a),

which is in contrast to the static case (see Yokobori et al.[25]). Figure

6b shows the variation of K with che microcrack size b/a. As expected, a -.I

larger microcrack gives rise to a larger amplification of the stress

intensity factors. For b/a - 0 the configuration reduces to a single crack,

and in this case we have - K.
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ApipendixA

The Green's Function

The two-dimensional elastodynamic Green's function is given by (see

(281, (29])

G ..LL..LI z rUuaY (xpt;x,,) - 21p l1 H(cL(tr)r] r, r, .

- - [2c 2 (t-r)27r2

_RL__ c I H[cCtTT).r] rr -" Y TL= "cr= '7~-)-l R

RT a*)RT  6 JJ (A.l)

where

.

r- x-xpl - !c2(t-1)2 -r2 , - L,T (A.2)

and H(.) is the Heaviside step function. The function uG (xpt;x,r) denotes

the displacement in the a-direction observed at position x and at time t,

due to a unit force in the 7 direction, applied at position x and at time 'U

-P
r. The corresponding stress components follow from (A.1) and Hooke's law as

5-

2c2(t-r)
2
-r

2

G IxP~t~ ) -1-- H[cL(t-r)-r] Aea7(x P t;x,T) - "

B2C2(t)2 A +
+1 X±Hc.

H( cpT~t. A

4Y j
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in which

A -2(5 r + na + r, - 4r r r )Y (A.4)

BL - (r.2-2)6 r, + 2r, r, r, (A.5)

BT - 2r rr, -6 r, 6,r (A.6)a 7 'r' r 7  a- Y 67r 'L

" CL/CT (A.7) h.

The function u a(xpt;xLr) has the following properties
ay.

1) causality

u G(Xp,t;y,r)- 0 , if cL(t-7) < X-"pj , (A.8)

2) time translation

uaG(ptt+tl;x,t+tl) - u G(xpt;x,r)  (A.9)

The functions au /ar and a also possess these causality and time

translation properties.
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AD~endtx B

Proof of Eg.(3.17)

To prove the identity, Eq.(3.17), it is sufficient to consider only the

first term of H2  since the three terms of H2  havc similar forms. We
0~6

consider

t t+e

I GAUdr - lim f aGAu6dr (B.1)
0 - C-'O +o -

Partial integration of the right hand side of (B.1) yields

Ci I~ ud i ud t+e - t+e u6+im+f Y 6 4+ - 0
e-0 0 1~~r

rt+e G *~ ~
- lim Au dr u u+ Au + u6Ad 6d (B.2)

-O o6 10'-

The first two terms in (B.2) vanish due to the initial conditions on Au6 and
*067G anOG Tuweoti .

Au., and due to the causality properties of u and u 6 Thus, we obtain

t t16Y Au 6dr f u6 Ad 6di (B.3)

0 0

Equation (3.17) can be derived directly from (3.16) and (B.3).
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Fig. 1: Macrocrack-niicrocrack configuration.
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